

- Powerhouse the unique and the ingenious
- ➢ Powerhouse Kjørbo − facts and figures
- Powerhouse economy and motivation
- > Q&A

ARCHITECTURE AND CONSULTING COMPANY Approx. 900 employees with expertise in:

- Architecture
- City and Area Planning
- > Building and Construction
- Energy and the Environment
- Communication and Transport Engineering
- Landscape Architecture

The beginning - 2010

Zero Emission Conference November 2010

The building industry's responsibility

40%

Buildings account for approx. 40% of the global energy consumption and represent a major contribution to the global greenhouse gas emissions.

Powerhouse – the alliance

«No one can develop Powerhouse energy-positive buildings alone – but with the right partners we can do it»

The unique - Definition of a Powerhouse

➤ A Powerhouse is a building that during it's lifecycle produces more renewable energy than it consumes for production of building materials, construction, operation and demolition of the building.

<u>Additional criterias:</u>

- The quality of produced energy should not be lower than bought energy
- Minimum passivehouse standard (NS 3701)
- Appliances (PC, printers etc.) not included in the energy balance
- Embodied energy over the buildings lifecycle to be calculated in primary energy
- Shall be built within commercial market conditions

The unique - Definition of a Powerhouse

Operational Energy Demand

Embodied Energy (materials, construction, demolition)

Production of Renewable Energy (on site)

The first Powerhouse (concept) - Trondheim

New office building
Heated floor area: 13.000 m²
Approx. 500 workplaces

Powerhouse Montessori – Kindergarten

Powerhouse Telemark – Office building

The unique – complexity

The ingenious – the process

- New collaboration models and cooperation from day one
- Interaction and interdisciplinary design processes
- Holistic thinking where form follows environment

The first Powerhouse – Kjørbo, Sandvika

Renovation of two office buildings

➤ Originally built: 1980

➤ Heated floor area: 5,180 m²

➤ Project start: January 2012

➤ Completed: April 2014

Objectives

- Renovate to an energy positive building
- Commercial market conditions
- ➤ BREEAM-NOR «Outstanding»
- Keep the expression of the building

Powerhouse Kjørbo - location

Energy concept

- Consequent reduction of energy demand
- > Exposed concrete in ceiling for heat storage
- > Energy wells supply heat and free cooling.
- > Two heat pumps operating at different temperatures.
- > Local production of electricity

Energy efficient ventilation concept

- ➤ Efficient heat recovery (85%)
- ➤ Displacement ventilation
- Use of the building staircases, (reduced duct lengths, low speed)
- > Demand controlled
- Very low pressure drop (SFP 0,10-0,25)
- ➤ Openable windows

Energy efficient heating concept

Heat pump system

- > 10 energy wells (200 meter)
- ➤ 2 heat pumps with different working temperatures (80 kW for space heating and 8 kW for DHW)
- > Free cooling in summer
- \triangleright COP better than expected (3,9 / 4,2 => 4,1)
- District heating only as reserve not necessary for peak load

High efficient PV-system

Solar system

- ➤ 1550 m² on the roof of building 4, building 5 and the roof of the garage.
- > Efficiency solar panels: 20,4 %
- ➤ Installed power: 312 kW_p
- > Electricity production: 220 000 kWh/year

Minimize embodied energy – reuse

- > The buildings' structural systems remained
- Materials such as old glass façades have been reused
- ➤ All new materials were carefully chosen to ensure that the materials had low embodied energy.

CED [kWh primary/m2/year]

> The solar system counts for approx. 30%.

asplan viak

asplan viak

asplan viak

Energy Dashboard

orbo/index.php?mode=&kioskName=

Energy performance

Energy balance during 60 years of operation

Climate gas emission Asplan Viak Sandvika

Electric cars

- ➤ Dedicated parking for electric cars is available.
- > Surplus energy from the solar system can be used during summer.

Bicycle parking

- ➤ Safe and weather protected parking for bicycles.
- > E-bikes can be charged.
- > Access with the office key card.

Sustainable Transport

Solar Hydrogen Fuel Station

- Surplus solar power from the Powerhouse can be used to produce hydrogen.
- Electricity from the public grid can be used in periods without surplus of solar power.
- > Truck delivery, if necessary.

Solar Hydrogen Fuel Station

How is Powerhouse commercial?

Owner

Higher rent
Higher valuation and exit value
Lower finance cost

Tenant

Lower sick leave Increased productivity

Owner/tenant

Lower operating/common costs Branding / CSR

Tenants common costs split (avg.)

Most important measure to reduce tenants common costs which in turn gives potential for higher rent

Energibalanse for Norge, 2014 Energibalansen følger energiflyten på norsk territorium.

Thank you for your attention

Peter Bernhard Senior Consultant, Energy and Environment Asplan Viak AS, Sandvika pb@asplanviak.no Phone: +47 40 40 78 62

